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Abstract. The cyclotron resonance of very high-mobility two-dimensional holes in GaAs–
(Ga, Al)As heterojunctions grown on (111), (311) and (100) substrates has been studied over
the frequency range 30 to 200 GHz. Although the presence of two hole spin subbands in the
samples suggests that two cyclotron resonances should be observed, in practice only a single
resonance occurs for a wide range of conditions (temperature, field) and sample properties
(hole density, mobility). Furthermore, the cyclotron resonance spectra often exhibit a strong
temperature dependence. In the case of a single, sharp cyclotron resonance, the resonance
field may shift by as much as 20% when warming the sample from 1.4 to 4.2 K. In the case
of spectra containing multiple cyclotron resonances, similar changes in temperature shift the
resonance positions together to form a single cyclotron absorption. This behaviour is explained
in terms of two interacting hole subsystems with different effective masses formed by the two
spin subbands. An analytical expression for the contribution to the high-frequency conductivity
due to coupled cyclotron motion of the two hole systems is derived and shown to encompass
previous theories developed for more restricted ranges of conditions. The expression predicts
the complex behaviour of the experimental spectra very well, and enables hole masses, hole–
lattice scattering rates and hole–hole scattering rates to be extracted. Comparisons between
theory and data also show that a reactive interaction dominates the coupling between the spin
subsystems at low temperatures. This is the first of two papers dealing with correlated hole
cyclotron resonance; the second shows that the model derived in this work can also be used to
treat cyclotron resonance data recorded at very high magnetic fields∼40 T.

1. Introduction

The two-dimensional hole system (2DHS) formed in GaAs–(Ga, Al)As heterostructures
provides a fascinating contrast to the equivalent electron system. Whereas the latter
possesses an almost parabolic dispersion relationship and a Pauli spin splitting which is
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much less than the cyclotron energy, the 2DHS exhibits a wide range of effective masses,
a large and complex non-parabolicity and a relatively large energy splitting of the hole
spin states at finite wavevector in the absence of an applied magnetic field. Furthermore,
all of these characteristics may be varied by adjustment of substrate orientation and/or
confinement length [1–3]. In view of the very non-parabolic hole Landau levels, adjacent
cyclotron resonance (inter-Landau-level) transitions may have very different energies, so
when several Landau levels are populated, the occurrence of more than one cyclotron
resonance seems likely; e.g. in the limit of very low fields, two resonances representing
the classical cyclotron motion of holes in the two ‘spin subbands’ might be expected.
However, with the exception of a small number of early studies of relatively low-mobility
2DHS, which did exhibit multiple cyclotron resonances [4], more recent experiments on
higher-mobility samples have revealed single, sharp resonances, even when several Landau
levels are populated [1, 5]. In order to clarify the origin of this phenomenon, we have
carried out measurements of the cyclotron resonance of two-dimensional holes in GaAs–
(Ga, Al)As heterojunctions over the frequency range 25 GHz to 200 GHz, corresponding to
magnetic fields of less than 5 T. The cyclotron resonance spectra have been observed as a
function of temperatureT , areal hole densityps and hole mobilityµ; over the frequency
range chosen, both the cyclotron energy(h̄ωc) andkT are less than the Fermi energy(EF )
for most of the samples studied [6].

These measurements have allowed some criteria for the observation of multiple or single
cyclotron resonances to be deduced. The experiments involving variation of temperature
are especially important in this context, as they enable the multiple–single-cyclotron-
resonance boundary to be crossed. Furthermore, when only a single resonance is observed,
a strong temperature dependence of the cyclotron resonance field is apparent. This effect
is remarkably robust, and has been observed in magnetic fields of up to 40 T and for
temperatures of up to 20 K (see reference [7]).

As the two-dimensional hole system consists of two sets of interacting holes (the two
spin subbands) with differing effective masses, we have based our analysis of the data
on an extension of semiclassical models originally derived for two-component systems
such as electrons in Si MOSFETs; in the latter case the two components represented the
different X valleys of Si. An analytical expression for the contribution to the high-frequency
conductivity due to coupled cyclotron motion of the two hole systems has been derived. This
expression is shown both to encompass previous calculations and to predict the complex
behaviour of the experimental spectra. Using a comparison of model and experiment,
the hole effective masses, hole–lattice scattering rates and hole–hole scattering rates are
extracted.

This paper is organized as follows: the experimental arrangements and sample details
are given in section 2. The main experimental data are presented in section 3. In section
4 the semiclassical expression is derived; section 5 illustrates its use to extract parameters
from the experimental data. A summary is given in section 6. This is the first of two papers
dealing with correlated hole cyclotron resonance; in the second [7], the model derived in this
work is applied to cyclotron resonance data recorded at very high magnetic fields∼40 T.

2. Experimental details

The heterojunctions used in this study were grown under similar conditions on the crystal
planes (100), (311)A and (111) of GaAs by molecular beam epitaxy [8] and had the
following layer structures: 170̊A GaAs cap layer, 400̊A doped (1018 cm−3) Al 0.33Ga0.67As,
undoped Al0.33Ga0.67As spacer, 5000̊A undoped GaAs, superlattice buffer, semi-insulating
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Table 1. Sample identification, growth and DC transport characteristics.

Sample Growth 2 K mobility Total hole Spacer layer
No: I.D. direction (m2 V−1 s−1) density(1015m−2) thickness (nm)

1: NU939 (311)A 9 3.3 20
2: NU877 (100) 14 2.8 45
3: NU942 (311)A 120 0.8 60
4: NU950 (111) 10 3.0 45
5: NU1172 (311)A 100 0.4 120

substrate. Spacer layer thicknesses,ps and low-temperature mobilitiesµ derived using
the Hall and Shubnikov–de Haas effects are given in table 1. The sample substrates were
thinned to less than 100µm prior to the experiments.

A Millimetre-wave Vector Network Analyser [9] (MVNA) was used as source and
detector of the millimetre-wave radiation (25–200 GHz) for the cyclotron resonance
measurements. The MVNA was set at a fixed frequency as the magnetic fieldB, provided
by a superconducting solenoid, was swept. Many of the cyclotron resonance spectra were
recorded by measuring the transmission of the thinned sample, which could be maintained
at a stable temperature between 1.4 and 4.2 K using4He exchange gas. However, further
measurements of mm-wave power absorption were made using a cylindrical resonant cavity,
tunable from 50–70 GHz; this provides a well controlled electrodynamic environment for
the sample. Ideally, the measured cavity transmission amplitude is determined by the
absorption of the sample, i.e. the real part of the dynamical conductivity, Re{σ(ω)}, and
the phase of the transmitted signal is determined by the dispersion, Im{σ(ω)}. Since the
millimetre-wave source is locked to a quartz oscillator, there is in practice a small amount
of mixing (<30%) between the absorption and the dispersion. This mixing is reflected in
the experimental cyclotron resonance spectra [10]. The cavity measurements were carried
out in a single-shot3He insert which allowed the sample temperature to be varied in the
range 0.50–4.2 K.

3. Experimental cyclotron resonance data

In this section we shall seek to display the (at first sight complicated) phenomenology of the
cyclotron resonance spectra of the two-dimensional holes, prior to the quantitative analysis
in section 4. Figures 1(a) and 1(b) show the cavity transmission for samples 1, 2 and 3 as a
function of magnetic field at frequencies of 53.4 GHz (figure 1(a)) and 67 GHz (figure 1(b));
all data were recorded at 1.4 K. Both sample 1, a (311)A orientation sample of relatively
low mobility and high hole density (table 1), and sample 2, a (100) orientation sample of
similar hole density but somewhat higher mobility, exhibit two clear cyclotron resonances,
seen as minima in the cavity transmission. At such frequencies, both ¯hωc andkT are much
less than the Fermi energies of samples 1 and 2 (EF ∼ 3 meV), so resonances associated
with the two spin subbands of different mass might be expected. By contrast, only a single
sharp resonance is observed at these two frequencies for sample 3, a (311)A orientation
sample of lower hole density and very high mobility (table 1).

Figure 1(c) shows the effect of increasing the cyclotron frequency to∼190 GHz; in this
case the traces represent straightforward transmission, without the use of a cavity [11].
Sample 1 shows a more complicated cyclotron resonance lineshape comprising three
resonances; no distinction in terms of spin subbands can be made here. However, sample 2
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Figure 1. Resonant cavity spectra at the frequencies 53.4 GHz (a) and 67.0 GHz (b) and
magnetotransmission spectra (c) for samples 1, 2 and 3 at 1.4 K.

Figure 2. Magnetotransmission spectra for sample 5 at a range of temperatures. In each case the
vertical scale is transmission, measured in arbitrary units; traces are shown at various constant
temperatures between 4.2 K (topmost trace) to 1.4 K (lowest trace). For (a), (b) and (c), the
frequencies are 36 GHz, 60 GHz and 195 GHz respectively.

displays a single, sharpened resonance with no clear multi-line structure. A single cyclotron
resonance is also observed in the case of sample 3.

When a single cyclotron resonance is observed, its position is often found to be
very temperature dependent. The temperature dependence of the cyclotron resonance
for a very low-ps sample (sample 5) is shown in figure 2 at three frequencies; the data
represent simple transmission measurements. The lower-frequency (i.e. lower-field) cyclo-
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Figure 3. A plot of the cyclotron frequency as a function of magnetic field for sample 3 at 1.4 K
and 4.2 K. The solid line is a linear fit to the points. The inset shows the cyclotron frequency
plotted against magnetic field for sample 5 at 1.5 K and 4.2 K.

Figure 4. Resonant cavity spectra of samples 3 (a) (66.7 GHz), 1 (b) (66.8 GHz) and 2 (c)
(66.8 GHz) at temperatures of 500 mK, 1.5 K and 4.2 K.

tron resonances (figures 2(a) and 2(b)) exhibit a strong shift with temperature; however,
once the ultraquantum limit is reached (figure 2(c)), no shift is discernible between 1.4
and 4.2 K (however, see reference [7], in which a shift of the resonance to lower fields
with increasing temperature appears at higher fields and temperatures). Figure 3 shows the
cyclotron frequencies of samples 3 (main figure) and 5 (inset) plotted against resonant field
for temperatures of 1.4–1.5 K and 4.2 K; the data show that the upshift in cyclotron resonance
field with temperature is proportional to the frequency, indicating that it corresponds to an
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increase in measured cyclotron mass, rather than, say, the temperature-dependent depinning
of a quasi-bound state [12]. Such upshifts of cyclotron resonance field have been found
to be a general feature of hole cyclotron resonance spectra and have been observed in
many samples not detailed in this report, covering a range ofps from 0.4× 1015 m−2 to
2× 1015 m−2, and both (311)A and (100) substrate orientations [3, 13].

The evolution of the cyclotron resonance lineshape with temperature is illustrated in
figure 4 for samples 1, 2 and 3 (cf. figure 1); all data in this figure were recorded with the
samples in the resonant cavity. At 4.2 K a single Lorentzian lineshape is observed in all
cases. As the temperature is lowered to 1.5 K, the single cyclotron resonances in the two
higher-density samples (1 and 2; figures 4(b) and 4(c)) split into two. A further decrease
of the temperature to 500 mK results in extra structure superimposed on the transmission
spectra of samples 1 and 2 (figures 4(b) and 4(c)); the frequency independence of this
structure and its periodicity in 1/B (see also figure 6, below) show that it is due to quantum
oscillations [14], well known in two-dimensional electron systems. At 500 mK, even the
lowest-density sample (3; figure 4(a)) develops a second, weak resonance on the high-field
side of the main resonance.

Figure 5. The resonant cavity magnetotransmission of sample 1 over a range of temperatures
at 60 GHz (a) and 80 GHz (b). Experimental data are shown as solid lines; fitted lineshapes
(see sections 4 and 5 of the text) have been plotted as dotted lines.

Figure 5 shows the evolution of the cyclotron lineshape with temperature in more detail;
it features cavity measurements of sample 1 at 60 GHz and 80 GHz. The two cyclotron
resonance fields shift together as the temperature is raised; it is worth pointing out that
the lineshapes measured at 4.2 K cannot be modelled by simply broadening the lower-
temperature double resonances.

The frequency dependence of the cyclotron resonance lineshapes was studied over the
tunable range of the resonant cavity,∼50–70 GHz. The small, higher-field resonance
observed for sample 3 at 500 mK (figure 4(a)) was found to increase in strength with
increasing frequency, as shown in figure 6(a). Similar data are shown for the higher-density
sample 3 in figure 6(b); although the change in the relative strength of the two cyclotron
resonances is less marked, the field independence of the quantum oscillation features is
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Figure 6. The frequency dependence of the cyclotron resonance spectra of samples 3 (a) and
1 (b), measured in the tunable resonant cavity. In all cases the sample temperature is 500 mK.
The fitted lineshapes are plotted as dotted lines. The frequencies are indicated by each trace.

clearly demonstrated.

4. Theory of cyclotron resonance in a two-component interacting system

Cyclotron resonance studies of the two-carrier system formed by electron pockets in the
different X valleys of Si MOSFETs show some striking parallels with the results reported in
section 3 of this paper. In the Si work, frequently a single resonance was observed, despite
a significant population of electrons in both valleys [15]. In addition, a strong temperature
dependence of the resonance position was observed. In order to explain these phenomena,
Coulomb interactions between the two electron populations were examined in a number
of studies. Appel and Overhauser [16] showed, using a classical model, that electron–
electron scattering could relax the relative momentum between two electron populations
undergoing cyclotron orbits of different frequencies. In the limit of strong electron–electron
scattering, a single coupled resonance, lying at the mean frequency of the two ‘independent’
cyclotron resonances, was predicted. This model was only valid in the low-field regime,
whereh̄ω � EF . In the remaining part of this section, we shall apply these ideas to the
two-component hole system, and derive a model which encompasses all of the experimental
regimes encountered.

Kohn’s theorem [17] states that in a translationally invariant system the cyclotron
resonance absorption is not influenced by carrier–carrier interactions. This theorem is also
applicable to systems which are confined by parabolic confinement potentials [18]. The
consequences of this theorem are far reaching; it allows one to replace the many-particle
system by a single effective particle. However, in the presence of disorder or a non-parabolic
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dispersion relation, or different types of carrier with e.g. different masses, Kohn’s theorem
is no longer valid and inter-particle interactions can alter the cyclotron resonance absorption
spectrum (see reference [18] and references therein).

For small magnetic fields and small-to-moderate hole densities, the two dimensional
hole systems studied in this paper in effect contain two different hole subsystems (the spin
subbands), which we label using the indexi = 1, 2. The subsystems are characterized
by the parametersni , mi and τi , whereni is the hole density,mi is the hole mass and
τi is the relaxation time of theith subsystem. Following Kukkonen and Maldague [19]
we introducePi , the total momentum of each subsystem, and defineP = P1 + P2 as
the total momentum andΠ = (P1/n1m1 − P2/n2m2)n1n2m1m2/(n1m1 + n2m2) as the
relative momentum of the two subsystems. BecauseP1 = Π+Pn1m1/(n1m1+n2m2) and
P2 = −Π+ Pn2m2/(n1m1+ n2m2), the total current of the system is given by

J = e

A

(
n1+ n2

n1m1+ n2m2
P +

(
1

m1
− 1

m2

)
Π
)
. (1)

This not only depends on the total momentumP , but also, whenm1 6= m2, on the relative
momentumΠ of the two-carrier system. It is the latter which is responsible for the depend-
ence of the current (and thus the conductivity and the cyclotron absorption) on the carrier–
carrier interaction.

We solved the kinetic equations of motion and assumed that the time dependence of the
relative momentum is given by

dΠ
dt
= −

(
iω0+ 1

τ12

)
Π (2)

where the frequencyω0 and the relaxation timeτ12 are determined by the Coulomb
interaction between the two subsystems. Thus the inter-particle interaction can be resolved
into reactive (i.e. oscillating) and dissipative (i.e. decaying) parts in the time dependence of
the relative momentum. In general one has dΠ/dt = −iM(ω)Π, whereM(ω) is a memory
function which also depends on the frequencyω of the applied light to which the system
responds. Although the imaginary part of the interaction was ignored in the calculations
of reference [16], the memory function was calculated by Tinget al [20] for the case of
Coulomb scattering between electron pockets in different X valleys of a Si MOSFET. In
the present approach we takeM(ω) = ω0 − i/τ12. This is a generalization of the work
by Appel and Overhauser [16] who assumed a purely dissipative relaxation of the electron
momentum. While Takada and Ando [21] used an approach which is more closely related
to the present one, with a real and imaginary part, their final expression for the conductivity
is slightly different.

The solution of the kinetic equations proceeds along the lines given by Appel and
Overhauser [16] and therefore we shall limit ourselves to the main results. We assume that
a magnetic field is applied perpendicular to the 2D plane and that we are interested in the
linear response to circularly polarized light with frequencyω, Jx + iJy = σ(ω)(Ex + iEy).
The final result is

σ(ω) = e2

D(ω)

{
i

(
ω − ωc,1− i

τ1
− f1

(
ω0+ i

τ12

))
n2

m2

+ i

(
ω − ωc,2− i

τ2
− f2

(
ω0+ i

τ12

))
n1

m1

− i

(
ω0+ i

τ12

)
2n1n2

n1m1+ n2m2

}
(3)
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where

D(ω) = −
(
ω − ωc,1− i

τ1
− f1

(
ω0+ i

τ12

))(
ω − ωc,2− i

τ2
− f2

(
ω0+ i

τ12

))
+ f1f2

(
ω0+ i

τ12

)2

(4)

with f1 = 1/(1+n1m1/n2m2) andf2 = 1/(1+n2m2/n1m1) and where we have introduced
the single-particle cyclotron frequenciesωc,i = eB/cmi, i = 1, 2. The absorption is given
by the real part of equation (3), i.e. Re{σ(ω)}. For light circularly polarized in the other
sense, i.e.Ex − iEy , the result is similar to equation (3) except thatωc,i must be replaced
by −ωc,i .

Figure 7. The real part of the dynamical conductivity of a two-component Fermi liquid,
calculated according to the model described in the text for a range of hole–hole scattering
rates. The parameters used are as follows:ω/2π = 60 GHz,m1 = 0.21me, m2 = 0.46me,
1/τ1 = 1/τ2 = 94 GHz,n2/n1 = 1.75. (a) shows the effect of the resistive component of the
hole–hole interaction; the values indicate 1/τ12 andω0 is set to zero. (b) shows the effect of
the reactive component of the hole–hole interaction; 1/τ12 is set to zero and the values indicate
ω0/2π .

The contrasting way in which the real part, 1/τ12, and the imaginary part,ω0/2π ,
of the hole–hole interaction influence the cyclotron resonance lineshape is illustrated in
figures 7(a) and 7(b), which show Re{σ(ω)}, evaluated atω = 60 GHz, for purely real
and purely imaginary hole–hole interactions respectively. The remaining input parameters
are listed in the figure caption. 1/τ12 acts to relax the relative momentum, so reducing the
splitting between the two single-particle resonances. This resistive interaction provides an
internal mechanism for dissipation which may broaden the cyclotron resonance linewidth
significantly, however high the DC mobility.ω0/2π , by contrast, shifts the balance of
oscillator strength between the two resonances while renormalizing their masses.ω0/2π
always acts to shift both resonances to higher field and increase their splitting; by shifting
the oscillator strength to the lower-field resonance the mean cyclotron resonance mass of
the system is made to remain unaltered, as required by Kohn’s theorem.

The present result has already been related to the models derived in the 1970s and
1980s [16, 20] to describe the behaviour of the cyclotron resonance in Si MOSFETs [15].
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It is easy to show that the above formula reduces to the one-component cyclotron resonance
result in the limit ofm1 = m2, τ1 = τ2, andω0 = 0, τ12 = ∞. For τ12 = ∞ andω0 = 0
two cyclotron resonance peaks are found centred atωc,1 andωc,2 respectively. It is well
known that Coulomb scattering results in a carrier relaxation rate which is proportional to
T 2 for EF > kBT . Consequently, for sufficiently high temperatures and in the absence of
any reactive coupling (i.e.ω0 = 0) we can take the limitτi/τ12 � 1 which leads to the
strong-coupling result with a single Lorentzian CR peak

σ(ω) = −ie2 (n1+ n2)
2

n1m1+ n2m2

1

ω − ωc + i/τ
(5)

with the CR frequencyωc = (n1m1ωc,1 + n2m2ωc,2)/(n1m1 + n2m2) and the broadening
1/τ = (n1m1/τ1 + n2m2/τ2)/(n1m1 + n2m2). Thus with increasing temperature the CR
spectrum evolves from two peaks to a single peak.

Recently, the high-field cyclotron resonance of high-mobility GaAs heterostructures
has been measured by a number of groups [22] in the quest for evidence of Wigner
crystallization. For low Landau-level filling factors, a single cyclotron resonance was
observed at extremely low temperatures; with increasing temperature this split into two
resonances. This behaviour is the opposite of that observed at low magnetic fields in the
hole systems studied in the present paper (see e.g. figure 4). The high-field behaviour
of the two-dimensional electron systems was explained by Cooper and Chalker [23] as
resulting from a crossover from independent spin-split resonances to a single cyclotron
mode dominated by Coulomb interactions. In this case it is band non-parabolicity which
provides the two subsystems of carriers with different mass; i.e. the masses of the electrons
in the spin-up and spin-down states are different. Here we will show that this high-magnetic
field behaviour is also correctly described by equation (3) if we consider the appropriate
limits, and that we are able to reproduce this splitting of the cyclotron resonance peak and
the collapse of the split resonance into a single peak with increasing Coulomb interaction.

We consider the above result and take the low-temperature limit, i.e. 1/τ12 ≈ 0. In
order to compare our result with those of others we further take the limit of zero dissipation,
i.e. 1/τi = 0. Then the numerator of equation (4) reduces to

D(ω) = −(ω − ωc,1)(ω − ωc,2)+
{
n1m1(ω − ωc,1)+ n2m2(ω − ωc,2)

} ω0

n1m1+ n2m2
(6)

which has the following zeros:

ω± = 1

2

{
(ωc,1+ ωc,2+ ω0)

±
√
(ωc,1+ ωc,2+ ωc)2− 4

(
ωc,1ωc,2+ ω0

n1m1ωc,1+ n2m2ωc,2

n1m1+ n2m2

)}
(7)

and which results in two delta peaks in the absorption spectrum located atω = ω±. This
result is exactly the one given by the simplified model of Cooper and Chalker [23] (see
equations (9)–(11) of reference [23]). Cooper and Chalker used the following notations:
δωc = ωc,2 − ωc,1, with the coupling strengthα = ω0/δωc, the occupation of the
minority carriersp = n1/(n1 + n2m2/m1) and the shift in the CR frequencyωin, ωout =
(ω± − ωc,2)/δωc. The coupling strength was calculated in reference [23] for the case of
electrons localized on a Wigner lattice; it was found thatα = 11.034(e2l2/2εa3)(1/h̄δωc)
in the present cgs units; hereε is the static dielectric constant of the material,l = √h̄c/eB
is the magnetic length anda =

√
2/
√

3n is the lattice constant of the hexagonal Wigner
lattice withn the electron density. Note that equation (7) is essentially the same as the one
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obtained recently by Huet al [24]. Both groups then introduced a Lorentzian broadening
of these two peaks in order to compare the CR absorption with the experimental result. It
should be noted that in our approach the broadening of the CR peak(s) is introduced in the
initial stage of our phenomenological model and does not have to be added at the end of
the calculation. A different approach was followed by Asano and Ando [25] who calculated
numerically the energy levels of a finite rectangular system of electrons in a magnetic field
with periodic boundary conditions. They used the Kubo formula in which (1) a thermal
average was performed over the eigenvalues of the system, and (2) a Lorentzian broadening
of the delta function expressing energy conservation was introduced.

Figure 8. (a) Cyclotron resonance (CR) masses obtained by fitting the resonant cavity data
at each frequency, at 500 mK, for sample 3. (b) Scattering rates (GHz) obtained from fitting
500 mK data for sample 3 (1/τi , triangles; 1/τ12, squares;ω0/2π , circles). (c) Cyclotron
resonance masses obtained by fitting the resonant cavity data at each frequency, at 500 mK,
for sample 1. (d) Scattering rates (GHz) obtained by fitting 500 mK data for sample 1 (1/τi ,
triangles; 1/τ12, squares;ω0/2π , circles).

5. Results of the fitting and discussion of the low-field data

In order to extract some further information about the underlying characteristics of the
holes, we have fitted the experimental lineshapes using the above model. A difficulty in
this procedure is the large number of parameters involved; in addition to intrinsic hole
parameters such as the massesmi (i = 1, 2), the hole–lattice relaxation rates 1/τi and
the hole–hole relaxation ratesω0/2π and 1/τ12, we must take account of standing-wave-
induced mixing between real and imaginary parts ofσ(ω) (see section 2). If, for simplicity,
it is assumed thatτ = τ1 = τ2, a value forτ somewhat shorter than that suggested by
DC transport measurements is required in general to fit the observed cyclotron resonance
lineshape. The difference is largest in the case of sample 3, where DC measurements
suggest a mobility of 120 m2 V−1 s−1 and the cyclotron resonance linewidth yields an
AC mobility of ∼15 m2 V−1 s−1. The insensitivity of DC measurements to small-angle
scattering has been cited on a number of previous occasions [26] to explain the observed
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differences between mobilities found in cyclotron resonance and DC transport. Thus we
includeτ as a free parameter in the fitting procedure.

Unique fits to the lineshape were obtained for sample 3 at 500 mK for six frequencies
from 56.1 GHz to 66.7 GHz; for the two lowest frequencies measured, the second, higher-
field resonance was insufficiently strong to obtain a reliable fit. The fits are shown as
dotted lines in figure 6(a), and can be seen to follow the experimental curves very closely.
The parameters obtained are plotted in figures 8(a) and 8(b); similar values for all of the
parameters are obtained across this frequency range. The fits show that in the case of
sample 3, the hole–hole interaction is dominated byω0/2π rather than 1/τ12.

In contrast, although fits to the lineshapes for sample 1 at 500 mK (figure 6(b)) yield
reasonable values form1 andm2 (figure 8(c)), there was considerable scatter in the values
of the various scattering rates (figure 8(d)); this may be associated with distortions to the
lineshape caused by the quantum oscillations (see section 3). We have assumed no frequency
dependence for the effective mass over this small frequency range and taken the two mean
values obtained from this fitting for subsequent analysis of the temperature dependence data
from sample 1, described below.

Figure 9. Hole–lattice, resistive hole–hole and reactive hole–hole scattering rates obtained from
fitting resonant cavity data for sample 1 as a function of temperature (fitted lineshapes are shown
in figure 5). Measurements at both 60 GHz and 80 GHz are shown and all fits assume masses
of 0.21me and 0.46me.

The temperature dependence of the hole–hole momentum relaxation rate has been
obtained by fitting the cyclotron resonance data for sample 1 shown in figure 5 (fits
shown as dotted lines). Masses ofm1 = 0.21me andm2 = 0.46me are used throughout.
This procedure yields roughly constant values for 1/τi and ω0/2π . The temperature
dependence of the lineshape is clearly due to 1/τ12, which appears to increase superlinearly
with temperature. Figure 9 shows the fitted relaxation rates and the functionαT 2, with
α ≈ 17 s−1 T−2 obtained by fitting to the values of 1/τ12 measured at 60 GHz.

Figure 10(a) shows simulated cyclotron resonance lineshapes assuming that (1)ω0/2π
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Figure 10. (a) The simulated cyclotron resonance temperature dependence of sample 1, obtained
using the expression described in the text and assuming 1/τ12 = 2.8T 2. All other parameters
are held constant:ω/2π = 60 GHz,m1 = 0.21me, m2 = 0.46me, 1/τ1 = 1/τ2 = 94 GHz,
n2/n1 = 1.75,ω0/2π = 75 GHz. (b) The simulated cyclotron resonance frequency dependence
of sample 3, obtained using the parameters found for this sample at 500 mK and 64.3 GHz:
m1 = 0.28me, m2 = 0.35me, 1/τ1 = 1/τ2 = 38 GHz, n2/n1 = 1.1, ω0/2π = 200 GHz,
1/τ12 = 63 GHz. Note that at 70 GHz the higher-field resonance is barely detectable in Re{σ }.
However, it becomes visible in the measured spectra due to standing-wave-induced mixing of
Im{σ } into the measured signal.

is constant and (2) 1/τ12 = αT 2 (see figure 9), in order to reproduce the qualitative features
shown by sample 1 at 60 GHz. The parameter values are shown in the figure caption.
Simulated cyclotron resonance lineshapes over a wider frequency range than that covered
by the mm-wave experiment are shown in figure 10(b), using the parameters obtained for
sample 3 at 64.3 GHz and 500 mK. Note that in this figure the imaginary component of
σ(ω) has been removed with the result that the high-field satellite resonance is no longer
visible below 1 T but grows in strength at higher magnetic fields above this value. The
lower-field resonance decreases in strength at higher frequencies as part of its oscillator
strength transfers to the higher-field resonance.

The fitted hole masses for sample 1 are in reasonable agreement with subband
calculations for a (311) accumulation layer withps = 3 × 1015 m−2. The calculations
start from a rotated Luttinger Hamiltonian for a general [hkk] growth direction [27] and use
an approximate potential obtained by solving the Poisson equation using a Fang–Howard
wavefunction in a triangular potential well. It is known that the difference between the
latter approximation and fully self-consistent calculations is insignificant [28, 29]. The hole
subbands are derived in the envelope-function approximation and the axial approximation
is invoked. The hole potential was found to be particularly sensitive to the nature and level
of background doping in the GaAs and so calculations were performed for both inversion
and accumulation layer cases. Since the dominant impurities, silicon and carbon, both act
as acceptors in this crystal orientation, the background doping is expected to be p type; the
fitted values form1 andm2 reinforce this view. The masses calculated at the Fermi energy
arem1 = 0.16me, m2 = 0.48me andm1 = 0.16me, m2 = 0.35me for the accumulation and
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inversion cases respectively. For more quantitative agreement, axial asymmetry must be
included in the subband calculation [28].

The measured splitting betweenm1 andm2 found in the lower-density sample, 3, is
somewhat less than that expected from subband calculations. These suggestm1 = 0.15me
andm2 = 0.34me, whereas it is found thatm1 = 0.28me andm2 = 0.35me give the best
fit to the data. The rather small difference in masses between the spin subbands is further
experimentally reinforced by transport measurements of the subband hole densities [30]
which indicaten2/n1 ' 1.1 for samples withps = 0.8× 1015 m−2, and hence broadly
similar masses for the two subbands.

DC transport has also been used to probe the hole–hole scattering rate 1/τ12

through studies of the low-field positive longitudinal magnetoresistance found in these
samples [30, 31]. The longitudinal resistance,Rxx = Re{σ0}/|σ0|, may be modelled using
the zero-frequency limit of the dynamical conductivity,σ(ω), given in equation (3) derived
in section 4. The positive magnetoresistance arises from the presence of two carrier types
of different mobility; this may occur through either a difference in mass or a difference in
scattering times between the populations. 1/τ12 influences the magnetoresistance by relaxing
the relative momenta, or equivalently the mobility, of the two groups of holes as discussed
above, leading to zero magnetoresistance in the case of strong hole–hole scattering. The
temperature dependence of the magnetoresistance may then provide information on the
temperature dependence of 1/τ12. DC measurements ofRxx provide no information on the
reactive part of the hole–hole interaction since Re{σ } has noω0-dependence atω = 0. A
(100) sample withps = 3.2×1015 m−2 was studied by Murzinet al [31]; a T 2-dependence
for 1/τ12 and constant hole–lattice relaxation rates are assumed. By fitting the temperature
dependence of the magnetoresistance the 1/τ12 prefactor was found to be 50 GHz K−2.
This implies hole–hole scattering rates of very similar size to those obtained for sample 1
in this report. A different magnetoresistance study, by Crump [30], considered samples
with ps = 0.9 and 1.75× 1015 m−2 over the temperature range 0.3–1.5 K; in Crump’s
work the single-particle relaxation rates were fitted at each temperature. The temperature
dependence of 1/τ12 was found to be very weak; the strong temperature dependence of the
low-field magnetoresistance was attributed to an increase in the hole–lattice scattering rate
of the lighter subband through temperature-dependent screening [30].

The T 2-dependence of inter-particle Coulomb scattering is well known theoretically
and has been tested experimentally through transport measurements on double-layer
systems [32]. It is perhaps therefore surprising that our measurements apparently indicate
a significant value of 1/τ12 at the lowest temperatures. Appel and Overhauser [16] have
pointed out that 1/τ12 has a term proportional to ¯hω2, independent of temperature. However,
this is insufficient to explain the low-temperature limit of 1/τ12(T=0) = 50.3 GHz.

The apparent increase in the 1/τ12 obtained at 80 GHz compared to that at 60 GHz
probably has a different origin; the reduced splitting at 2 K may be due to the ‘diamagnetic’
effect of the larger field which tends to reduce the distinction between the two spin subbands
at smaller filling factors [33]. The latter effect would also affect the results at 60 GHz and
may explain the difference between experimental masses and those obtained from model
calculations.

We obtain a value of 1/τ12 = 310 GHz for sample 1 at 4.2 K; this is considerably larger
than that calculated for a Si inversion layer with electron densityns = 5× 1015 m−2 and
similar Fermi energies in each subband by Tinget al [20], who found 1/τ12 ' 25 GHz at
10 K. Conversely, the reactive scattering rates appear quite similar for the two-dimensional
hole system and the Si MOSFETs;ω0/2π ' 120 GHz was calculated for the Si case at
10 K compared toω0/2π ' 88 GHz measured for sample 1 at 3 K. Although 1/τ12 is
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more significant at lower carrier density, the larger value found in the two-dimensional hole
system may arise from the additional scattering processes which are possible compared to
the Si case; since the electron subbands in Si MOSFETs lie in pockets widely separated in
wavevector space, exchange of carriers between the subbands is much more difficult. In the
hole system, the two hole Fermi cylinders are coaxial and concentric, so spin-flip scattering
is allowed through subband mixing.

In samples of lower hole density a single Lorentzian resonance is obtained down to low
temperatures as a result of the stronger hole–hole interaction and the smaller difference in
hole masses between spin subbands at lower Fermi energies. In all theories for interacting
systems, the hole–hole interactions may not alter the mean effective mass of the system; the
strong temperature dependence of the mean mass, observed where a single, sharp resonance
occurs, is attributed to the strong non-parabolicity of the hole subband. The density of
states increases with energy, and this will weight the effective mass to a higher value at
higher temperatures. The chemical potential is only weakly dependent on temperature for
kT � EF . However in the limitkT � EF we haveµ ∝ −kT ln(kT ). Thus the temperature
dependence may be enhanced in samples of smallps .

6. Summary and conclusions

Observations of cyclotron resonance have demonstrated that inter-particle interactions are
very significant in the two-dimensional hole system. For a system of two interacting Fermi
liquids, under the conditions ¯hωc � kT � EF , the coupling between the two liquids
is characterized by a complex relative momentum relaxation time. We have solved the
classical kinetic equations for such a two-component system in order to fit the measured
cyclotron resonance lineshapes obtained from the two-dimensional hole system. In the
hole system the two populations of different mass are formed from the zero-field ‘spin
splitting’ of the heterojunction subbands. The hole–hole relaxation rates are found to lie
in the GHz region in the low-field case; if the difference in cyclotron frequency of the
two hole populations is much smaller than the hole–hole scattering rate a single coupled
resonance occurs, whereas if it is much greater, single-particle behaviour is observed. By
fitting the experimental data we have extracted the hole effective masses and scattering
rates. The real component of the hole–hole scattering rate is expected to vanish at zero
temperature; we find that the hole–hole relaxation rate is dominated byω0/2π at 500 mK
in our samples, corresponding to the reactive component of the interaction between the two
hole populations. As the temperature is raised the dissipative part of the hole–hole relaxation
rate, 1/τ12, increases superlinearly. A qualitatively similar temperature dependence can be
reproduced assuming aT 2-dependence of 1/τ12, although more detailed fitting suggests a
non-zero value of 1/τ12 at zero temperature.ω0/2π acts to renormalize the hole masses and
oscillator strengths; no significant temperature dependence for this quantity was observed
over the ranges investigated. The strong temperature dependence of the mean effective
mass found at mm-wave frequencies is attributed to non-parabolicity of the hole subbands
and is found for all samples with sufficiently narrow cyclotron resonance linewidths.
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